
AD-A092 625 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER -ETC F/6 9/2
AN OPTIMALITY THEORY OF CONCURRENCY CONTROL FOR DATABASES. (U)
NOV 80 H KUNG, C 1 PAPADIMITRIOU N0091476-C-037 0

UNCLASSIFIED NL

MENUIEEEhEhEn

IL L.20
1.1 . :

MICROCOPY RES LUTO ES HR

NAIN L BUEU2.0ANAD-1A-

LEVE
LABORATORY FOR MASSAINSTITUTE OFCOMPUTER SCIENCE TECHNOLOGY

O ~M/1TMAl4185

AN OW'IMA:=r THMWR' OF CONCUR42Cy CONROL

FOR DAABASES

Hsing-Ts5g Kung
Christos H. Papadimitriou

DTICIELECTED

1ovent:r 1980 DEC 5 1980

D

Thisresearch is supported In part by the National
Science Foundation under Grants MCS 75-222-55,
M 77-01193,1CS 77-05314, the Office of Naval

CD Re-search under Contract N00014-76-C-0370
C-.1and a Miller Fellowship.

LAJ1

CMD 545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

DISTRIBUI'ION ST_. IV_ ENT A

Approved for public release;

D U md

SEUiYCLASSIFICATION OF THIS PAGE (ManeateEtrd

REPORT DOUETTO AEREAD ISTRUCTIONS

NUMBER2. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

MT/LCS/7-l85 ~ __16_____4____u___1_S

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED,

An Optimality Theory of Cocrrc Conrl April 1979
for Databases 4- PERFORMING ORG. REPORT NUMBER

7. AU THOR(s) S N ART ~~OR RA F UMER()

H.T. Kng andC.H. Ppadimiriou CS 75-222-5 7051
I4ZS 77-01193. M:S 7-51_____________ad________________________ \N0014-764,437o'z/

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
MIT/Laboratory for Caputer Sciencev AREA & WORK UNIT NUMBERS

545 Technology Square
Camrbridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 11. REPORT DATE

cUR/Dpt. of NaVy .-.NSF/Associate Prog.Directo r eer18
InfrmaionSy Office Czip.Activities 13. NUMBER OF PAGES

Arlington, VA 2 Wahin' n(17
14. MONITORING AGENCY 119110AODRESS(if diffoe.ow. Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified
15a. DECLASSIFICATION/OOWNGRAOING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale;
its distribution is unlimited

17. DISTRIBUTION STATEMENT (of the obst,.ct entered in Block 20. It different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it neceesry and Identify by block number)

Database Concurrenicy Control
Schedulers
Performance vs. Information of Schedulers
Optimal Schedulers

20. ABSTRACT (Continue on reverse olde If necessary and identtfy by block number)

A concurrency control rmbchanism (or a scheduler) is the caapoxnent of a database
system that safeguards the consistency of the database in the presence of
interleaved accesses and update requests. We formally show that the perfommno
of a scheduler, i.e., the amoiunt of parallelism that it supports, depends
explicitly upon the wmmt of information that is available to the scheduler.
We Point out that most previous work on concurrency ontrol is amvply concerned
with specific points of this basic trade-off betwwe perfomno andino at

DO IJ N7 1473 EDITION OF I NOV 49 1S OBSOLETE SECURITY ~ir
SEUIYCLASSIFICATION OF THIS PAGE (When Dois tfneeuf

TVY CLAMI"U'Oktt OF TN.. P-SM Dii. bbMI

20. In fact, several of these aproaches an sham to be optimal for the
wacmt of ionlticn that they use.

AcCOAsion For

NTIS GRA&I k

DTIC TAB
Unannounced El
Justification

By DTIC
Distribution/ LEC....... .. ,It'ELECTED
Availability Codes

' ii aOEC 5 1980
Dist

I oI

SECURITY CLAIPICATION OP TWI PAOuStNm boa mM

- a. I. .

P)An Optimality Theory of Concurrency Control
for Databases.

H. T. Kung

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213 -Y

C. H. Papadimitriou

Laboratory for Computer Science
Massachusetts Institute of T'echnology

Cambidge, Massachusetts 02139

April 1979

[Last revised September 1980]

(This paper is issued simultaneously as a CIIU and HIT Technical Hernnrandtim)

KEYWORDS AND PHRASES: Database Concurrency Control, Schedulers,

Performance vs. Information of Schedulers, Optimal Sched'ulers.

This research is supported in part by thc National Science Foundation under Grants MCS 75-222-55,
MCS 77-01193. MCS 77-053 14. the Office of Naval Research under Contract N00014-76-C-0370, and a Miller
Fellowship.

maimf

Abstract

A concurrency control mechanism (or a scheduler) is the component of a database system that safeguards

the consistency of the database in the presence of interleaved accesses and update requests. We formally

show that the performance of a scheduler, i.e., the amount of parallelism that it supports, depends explicitly

upon the amount of information that is available to the scheduler. We point out that most previous work on

concurrency control is simply concerned with specific points of this basic trade-off between performance and

information. In fact, several of these approaches are shown to be optimal for the amount of information that

they use.

/.

SECTION 1 INTRODUCTION

1. Introduction
A database system may interact with many transactions in an interleaved manner. Even if we assume that

each such individual transaction is correct (that is, it preserves the consistency of the databases when run by

itself), the interleaved mode of operation may result in inconsistencies (see, for example, 12]). It is the task of

the concurrency control mechanism of the database system, called scheduler in this paper, to safeguard the

consistency of the database by granting or rejecting the execution of atomic steps of transactions, when

requests for such executions are made.

The design of schedulers for databases has proved to be a non-trivial problem, and some theoretical work

on the subject has appeared (see, for example, 12, 6, 7, 9]). Several solutions to this problem have been

proposed under a variety of assumptions. In this paper, we give a uniform framework for evaluating these

solutions, and, in some cases, for establishing their optimality. A scheduler is evaluated in terms of its

performance, which is measured by the set of request sequences that the scheduler can authorize for execution

without any delay. '[his set of request sequences is called the fixpoint set of the scheduler. The idea is that the

richer this set is, the more likely that no delays will be imposed by the scheduler. In this sense the fixpoint set

is a fair measure of the parallelism supported by the scheduler, and therefore of its performance.

We observe that there is a trade-off between scheduler performance and the information used by the

scheduler. 'The latter is the minimum knowledge about the database and the transactions that the scheduler

requires in order to function correctly. Typical information that could be useful to the scheduler is syntactic

information about the transactions (that is, a flowchart with the names of the database entities accessed and

updated at each step); or semantic information about the meaning of the data and the operations performed;

or the integrity constraints, the consistency requirements that the database must satisfy. Ideally, a scheduler

would like to have a perfect knowledge of all these three components of information. It is usually necessary,

however, to have the scheduler operate at some imperfect level of information. There are many reasons for

this. Some information (e.g., integrity constraints) may not be known explicitly even to the designer of the

database. If semantic information is given in some powerful enough language (e.g., arithmetic) then it may

not be possible to reason about it effectively. Finally, to utilize sophisticated information may render the

scheduling problem combinatorially intractable -- see [61 for a case in which the ability of simply

distinguishing between read and write operations makes the problem NP-complete. It should be intuitively

clear that the more information the scheduler has, the better job it can do in enriching its fixpoint set, and

therefore increasing its performance. We capture this intuitive trade-off in an equation (Theorems 3.1) and

exhibit several specific instances for which well known concurrency principles correspond to optimal

schedulers (optimal with respect to the information that they use). For example, in our framework we can

SECTION I INTRODUC1ION 2

formally show that serializability (which has been adapted in an ad hoc manner in virtually all the

concurrency control literature) is indeed the right notion of correctness when only synlaclic information is

available (as is usually the case). If semantic or integrity information is available, then more liberal

correctness criteria may be used (see, for example, [3, 4]). We also prove that some strict version of the two-

phase locking technique of [2] is the best possible principle when syntactic information is acquired in an

incremental manner.

The paper is organized as follows. In Section 2 we introduce our model for transaction systems, carefully

distinguishing among the syntactic, semantic, and integrity constraint components. In Section 3 we formally

introduce the notion of schedulers, and develop the basic tools for studying the information vs. performance

trade-off. Specific examples of optimal schedulers are presented in Section 4.

A~",

SECTION 2 TRANSACTION SYSTEMS 3.

2. Transaction Systems

2.1 Definition of a Transaction System

By a transaction system we mean a database (that is, data and integrity constraints) together with a set of

statically prespecified transaction programs. A transaction system can be formally defined in terms of three

components: syntax, semantics, and integrity constraints.

2.1.1. Syntax

A transaction sysiem 'r is a finite set of transactions, { 1 , ..., Tn}, n > 1,where each transaction '1"s is a finite

sequence of transaction steps, Ti, ..., Tim i. The n-tuple of integers (ml mn) is called the format of the

transaction system. For simplicity, we assume that all transaction systems under consideration have the same,

fixed format.

The transactions in a transaction system operate on a set of variable names. Ilhe variables are abstractions of

data entities, whose granularity is not important for our development. The variables can represent bits, files

or records, as long as they are individually accessible. The set of variable names is denoted by V. Besides the

(global) variables in V, each transaction T. is associated with local variables, t .t A transaction step Tt
in T, can be thought of as the indivisible execution of the following two instructions:

1j +- V. ,

Xij +- ii, t.i'

where f . is a j-place function symbol. That is to say, at step T.. the current value of some global variable xj E V

is stored at a local place t.. and then xi is assigned a new value, based on function f and knowledge availableIiI
to the transaction Ti at this time, namely, the values of all "declared" local variables L, tb. The meaning of

function fij is open to arbitrary interpretations at this point. For example, it could be the identity function on

%. in which case T.V is simply a read step. Similarly, if all fik(tii, tk) with k > j are independent of , then T U

is a write step.

*-g..~ .

SECrION 2 TRANSACON SYSTEMS 4

2.1.2. Semantics -;

Associated with each variable name v E V we have an enumerable set D(v), the domain of v, consisting of

all possible values that the variable v can assume -- typically the integers, the Boolean values, or finite strings.

A local variable t has always the same domain as x .

A state of a transaction system T is a triple (J, L, G), where

*1 is an n-tuple of integers (J, in) with j., (1 < j. < m.+1), specifying the next step of transaction
Ti. The ji's are thus program counters. Ifji - mi+VI, then transaction Ti has terminated.

* L is an element in [i <l. D(x,)) representing the values of all declared local variables.

* G is an element in rIvEvD(v) representing the current values of all global variables v e V.

The semantics of T associate with the function symbol f' at each step T. a function

T,: Hn<lD(xik) --+ D(xi), which is the interpretation of f.. Thus the execution of a transaction step maps

one state of the transaction system into another one. More precisely, if transaction step T. is eligible for

execution at state (J, L, G), that is, ifJi < m i, then its execution modifies the three components of the state as

follows:

jj ji + 1,
x . 4- ...t)

This view of single transaction steps can be extended to sequences of transaction steps in the obvious way.

2.1.3. Integrity Constraints

The integrity constraints of a transaction system T correspond to a subset IC of the product nHVVD(v). A

state (J, L, G) of T is said to be consistent if G belongs to IC. A sequence of transaction steps is said to be

correct if a serial execution of the steps in the sequence will map any consistent state of the transaction system

into a consistent state.

The basic assumption throughout the paper is that all transactions in a transaction system are correct.

I
SECI'ON 2 TRANSACTION SYSIEMS 5

2.2 Example

Consider a transaction system consisting of three transactions T, 1"2, and TV that access two banking

accounts A and B in the following way:

e Ti transfers $100 from A to B if A has enough funds and the balance of B is below $100.

e TI, withdraws $50 from B and increments a counter C, if B has enough funds.

* T3 is an auditing transaction that computes the sum S of A and B, and sets the counter C back to 0.

Syntax. The set of global variable names is V -{A, B, S, C}. The xi's are as follows:
X11 = A, x12 - B, x 13 -A =

X21= B, x 22 - C,

x31 = A, x32 - B, x33 = S, X , C

Thus the format of the transaction system is (3, 2, 4).

Semantics. For all v E V, Xv) is the set of natural numbers. Typical states would be as follows:

* (J. L. G) = ((1, 1, 1), *, (150, 50, 200, 0)). This is a possible state before any of the transactions has
started execution. We have A - $150, B - $50, S - $200, C = 0, and don't care about the values of
local variables.

* (J, L. G) - ((2, 2, 4), (150: 50; 150, 0, 200), (150, 0, 150, 0)). In this state, A has not been decreased
but B has. The new S has been computed but C has not.

As for the operations performed by each step:

P12 - ft11 > 100 and t12 < 100 then 42 + 100 else t2
T13 ift1 > 100 and t2 < 100 then t1 - 100 else tt,

T i21 1 Wf - 50 then t, - 50 else t2,
qp2= if t- 50 then t22 + 1 else t2

'31 = t3
T32 t32

'P33~ - t3
T34h -S

The integrity constraints may very well be the set of states for which A >0, B 2t 0, and A + B ,.S - 50C2.

SfElON 3 SCHEDULES AND SCHEDULERS 6'

3. Schedules and Schedulers

3.1 Schedules

A schedule of a transaction system T is a permutation of the set {Tij: 1 < i < n, 1 < j : mi} of steps in T

such that in the permutation T comes before Tik forj < k. We may think of a schedule as a possible stream of

arriving execution requests, or, in a different context, as a sequence of transaction steps that defines the order

in which these execution requests are granted execution. The set of all schedules of T is denoted by H(T).

Since this set depends only on the format of T and the format is assumed fixed, we shall write H for H(T). A

schedule is said to be correct if its execution preserves the consistency of the database. The set of all correct

schedules of T is denoted by C(T). The set C(T) is always nonempty, since it at least contains (by our basic

assumption that all transactions are correct) all serial schedules, that is, all permutations v such that
wr(Tij+,) - w(Tij + 1 for 1:< i < n and j < mi-1.

3.2 Schedulers

A scheduler (or concurrency control mechanism) transforms a stream of execution requests into a correct

schedule. This is achieved by properly granting or rejecting the execution of arriving requests. (A rejected

request is rescheduled for execution at some later time.) Thus, a scheduler for a transaction system T can be

viewed as a mapping S from H to CCI).

We measure the performance of a scheduler S by its fixpoint set Ps, defined as

Ps -{h EH: S(h) -h}.

Clearly Ps must be a subset of C(1). The larger Ps is, the more improbable it is that S will have to delay (or

reject) the execution of a transaction step, after such an execution is requested. We therefore consider the

inclusion-induced partial order on the sets P. as a "qualitative" measure of scheduler performance.

3.3 Information

A level of information available to a scheduler S about a transaction system T is defined to be a set I of

transaction systems {T, 'V. "V, ...} that contains T. Intuitively, if S is kept at this level of information, it knows

that the transaction system in question is among the transaction systems in I, but does not know exactly which.

Thus, S has to be a scheduler for all transaction systems V c I. For example, the set I could be the set of all

transaction systems that have the same syntax. This level of information corresponds to the case that a

scheduler has complete syntactic information, but no other information.

..................

SECTION 3 SCHIDULES AND SCHEDULERS 7

Alternatively, we could view I as a function that maps any transaction system T to an object 1(1) (E {0, I1).

Intuitively, [(T) is tie information extracted from T by the operator 1; for example, I(T) could be an encoding

of the syntax of T. The effect would be that T cannot be distinguished from the transaction systems 'i that

have the same image I(T); in the notation of the previous paragraph, which we are going to follow henceforth,

I - {TV: I(V1) - I(T)}.

The maximum possible information that a scheduler can have is, of course, the complete syntactic, semantic

and integrity information about the transaction system in question; this corresponds to I - {T}. The

minimum information is the format (in 1, ..., man); this corresponds to I being the set of all transaction systems

of the given format, with the single restriction that the transactions be correct -- by our basic assumption. The

more information available to the scheduler, the "better" scheduling results may be expected. We formally

capture this idea in the following theorem:

Theorem 3.1: For any scheduler S using information I, the fixpoint set Ps must satisfy:

Ps .i n'ei, c(r)"
The proof of this theorem uses a general adversary argument, instances of which we shall see many times in

the rest of the paper. The proof goes as follows. If there is a schedule h E PS and a transaction system 1V e I

such that h is not correct for 'I that is, h (-S(h)) i C('), then an adversary could "fool" the scheduler S by

choosing TV for S to handle, and giving h as the stream of execution requests. The resulting state after the

execution can be inconsistent, since S(h) q C('). Thus, the scheduler is incorrect.

As a corollary of Theorem 3.1, the maximum-performance scheduler using information I is the one that has

its fixpoint set P fl- n.r.1 C(TI). We call this scheduler the optimal scheduler for the level of information

I. (Notice that in practice there may be insurmountable difficulties -such as the negative complexity results

in [61 - in realizing the optimal scheduler for a given level of information.) The concept of information

introduced here partially orders schedulers with respect to their sophistication: we say that S is more

sophisticated than S' if S operates at a level of information I that is properly included in the level of

information 1V of S', that is, I r_ I'. On the other.hand, schedulers are also partially ordered with respect to

their performance: we say that S performs better than S' if P D Psi, 'l'ien the mapping from any level of

information I to the fixpoint set of the optimal scheduler for I, hi 1 (V), is a natural isomorphism between

these two partially ordered sets. This captures the fundamental trade-off between scheduler information and

performance, that is, if I c I' then Psi 2 P. for the optimal schedulers S and S' for I and I', respectively.

In the next section, we present several examples of schedulers that arc optimal for different levels of

information.

SEWTION 4 OPTIMAL SCIIEDUI-RS 8

4. Optimal Schedulers

4.1 Optimal Schedulers for Extreme of Information

Maximum Information

This is the case when complete information on the transaction system T in question is available to the

scheduler. The information level I in this case is a singleton set, i.e., I = {T}. We can therefore define the

scheduler S. in principle at least, such that Ps = CMT). This is the optimal scheduler for the maximum level of

information.

Minimum Information

If we only know the format of T, then we have the poorest possible level of information. What is the best

possible scheduler in this case? Consider a serial scheduler S which is defined to be a scheduler satisfying the

following property for any T:

S(H) = {all serial schedules of T} and Ps = {all serial schedules of TI,

where serial schedules are defined in Section 3.1. By our basic assumption that each transaction is correct, we

see that each schedule in S(H) is correct.

Theorem 4.1: The serial scheduler S is optimal among all schedulers using the minimum information.

Proof Suppose that S is not optimal. Then there must exist a non-serial schedule in CMI) in which some

steps T, TA1, Tk, in T are executed in this order. Note that because of the minimum information

assumption, I may contain transaction systems with any integrity constraints and interpretations for steps. We

assume that the integrity constraints for some transaction system V in I correspond to "x = 0", and that the

interpretations of function symbols are such that T1 is {Tik: x 4- x+1, Ti.k+1: x - x-1} and T. is

frjl: x +- 2x1. We see that T and Tj are correct, but the sequence {Ta, T1 1 T4 k+11 is not correct for it may

transform a consistent state, x = 0, into an inconsistent state, x = 1. Thus, the schedule is not in C(T). This

contradiction implies that for the minimum information case, the only correct schedules that a scheduler can

produce are serial schedules. Hence, the serial scheduler defined above is optimal. D

4 , is;- .,-
- .. ,

SECTION 4 OPTIMAL SCHEDULERS 9

4.2 Optimal Schedulers for Complete Syntactic Information

Suppose no\ that all syntactic information is available; that is, the information level has the property that I

is the set of all transaction systems with the same syntax. As in a similar situation in the theory of program

schemata, one can supplement this syntax with canonical semantics called Herbrand semantics (see [51 for a

detailed exposition). For all v E V, the domain D(v) is the set of all strings from the alphabet

I = V U [fiJ: i= 1,..., n; j = 1..., m.} plus the symbols I), "(", ,". If ... , a1 are elements of I(v),

then q)j (al..... a.), the interpretation of fij, is the string fij (al . . ., aj). In other words, the Herbrand

interpretation captures all the history of the values of all global variables. We say that a schedule h is

serializable if its execution results are the same as the execution results of some serial schedule under the

Herbrand semantics. Since serial schedules are correct, so are seriali.able schedules. By SR(T) we denote the

set of all serializable schedules of T. A serialization scheduler is defined to be a scheduler S satisfying the

following property for any T:

S(H) = SR(T) and P. = SR(T).

Theorem 4.2: A serialization scheduler is optimal among all schedulers using complete syntactic

information.

Proof. To prove the optimality, for any schedule h (SR(T), we shall define a transaction system T' c I

such that h C(V). The semantics of V are the Herbrand interpretation. Now, for the integrity constraints,

we define IC as follows. Assume that T is consistent initially. Let (v1 vk) be the initial values of global

variables in V, where k = IVI. If aI ..., ak are in D(v), we say that (a1 ... , ak) E IC iff there exists a serial

concatenation Q (possibly empty) of some transactions in T' such that the initial values (v1, ..., vk) are

transformed by Q to (a1, ... a,). By this definition, all transactions are individually correct, and our basic

assumption holds. Now, it is easy to see that, if h is any schedule, not in SR(T), then it transforms the initial

values (v1, ..., v) to a set of values not in IC. Hence, h e C(T). 0

The theorem shows that even if complete syntactic information of a transaction system T is available to a

scheduler, SR(T) is the maximum possible set of correct schedules a scheduler can hope to produce. After all

syntactic information is the information one can easily extract in a transaction system, by having the users

declare the files that they intend to open, say. It is therefore not at all surprising that most approaches to

concurrency control have serialization as their goal [2. 8, 7, 1, 6].

SECTION 4 OPTIMAL SCI IDULERS 10

4.3 Optimal Schedulers for Complete Semantic Information but Integrity

Constraints

Consider the transaction system of Fig. 4-1.

Tn TZ

T: x4- x+1 T21: x 4- x+1

T12 x 2*x

Figure 4-1: A transaction system.

The schedule h = (Ti , T21, T1) is not serializable since the Herbrand values for x of the two serial histories

are f12 (fn (f2, (x))) and f~l (f12 (ll (x))), whereas that of h is f2 (f2l (fl, (x))). But with the given

interpretations of the %'s, h is seen to produce the same state as the serial history (T21, Tn , T12). Hence, our

knowledge of the interpretations allows us to expand the set of correct schedules. It is not hard to see,

however, that the gains are delimited by a generalized notion of serialization, defined as follows. A schedule h

is said to be weakly serializable, if starting from any state E the execution of the schedule will end with a state

which is achievable by the execution of some concatenation of transactions in T, possibly with repetitions and

omissions of transactions, also starting from state E. Since transactions are assumed to be correct, a weakly

serializable schedule is correct. Denote by WSR(T) the set of all weakly serializable schedules of T. It is clear

that SR(T) Q WSR(I). A weak serialization scheduler is defined to be a scheduler S satisfying the following

property for any T:

S(H) = WSRm and Ps = WSR(T).

Theorem 4.3: A weak serialization scheduler is optimal among all schedulers using all information but the

integrity constraints.

The proof is quite similar to the proof of Theorem 4.2, and is omitted.

4.4 Optimal Schedulers for Dynamic Syntactic Information

So far we have implicitly assumed that the information of a scheduler about a transaction system is static in

nature, that is, prespecified and fixed. We now consider the case that information is dynamic, that is, the

amount of information available to a scheduler increases as the scheduler proceeds. We restrict ourselves

mainly to the important case of dynamic syntactic information.

At a given state (1, 1, G) of a transaction system T, the dynamic syntactic information available to a

scheduler is the complete syntactic information on all transaction steps T,'s with 1 < i S n, 1 < j S j, and on

those T,Jl 1 1 < i < n, which are pending for execution. Thus, the set I corresponding to this level of

a*- *

SECIION 4 OPTIMAL SCI IEDULERS 11

information consists of all transaction systems of the given format that are syntactically identical to the one at

hand up to the specified points. We can define by a straightforward generalization of the definition of P., the

fixpoint set PD of an optimal scheduler that uses dynamic syntactic information. By Theorem 4.2, we know

that PD must be contained in the set SR(T) of serializable schedules of T. Theorem 4.4 below characterizes PD

exactly.

Optimal schedulers for dynamic syntactic information are closely related to schedulers that are

implemented by the well-known two-phase locking policy [2], which is defined informally as follows. (a) If a

transaction accesses x E V, then there is a lock x step before the first access of x and an unlock x step after the

last, and (b) no lock step appears in any transaction after the first unlock step. Thus each transaction has two

phases: the locking phase, during which no locks can be released, and the unlocking phase, during which no

locks may be requested. Notice that rules (a) and (b) do not uniquely specify the positions of lock-unlock

steps.

A iwo-phase locking scheduler is simply a scheduler that treats transactions as though they were locked

according to some version of the two-phase locking policy. The fact that schedules output by a two-phase

locking scheduler are all correct follows from a proof in [2]. "he following version of the two-phase locking

policy can be implemented by a scheduler using dynamic syntactic information.

A strong two-phase locking policy. For any x e V, lock x is always inserted immediately before the first

access of x, and unlock x occurs only after the last step of a transaction (or immediately before, in case that the

last step does not update x.)

Theorem 44: A two-phase locking scheduler corresponding to the strong two-phase locking policy is

optimal among all schedulers using dynamic syntactic information.

Proof- Suppose that h is a schedule not belonging to the fixpoint set of the two-phase locking scheduler

defined in the theorem. Then there must exist transaction steps in h, say T,,, and Tj, such that

* T1j, is not the last step of transaction T, i.e., j, < n 1,

* T j, and T 2c cess the same variable x, and

* these steps are scheduled in h in the order TIU .. V T I, .. 1 ,T and either T, updates x, or T,
was not pending when T2J2 was scheduled for 6ecutidn. 1 1 1

We can construct a transaction system T - {T,, T2}, compatible with the syntactic information that was
available at the moment when T2J2 was scheduled, such that h 4 C(T). Transaction system T is defined as

follows:

SECTION 4 OPTIMAL SCHEDULERS 12

T : x+-x+l,
T' x-2 x,

all other steps are read steps, i.e., T.: x +- x., and the integrity constraints is "x = 0." It is readily seen that

schedule h is not a correct one for T, and thus the theorem follows. 03

Note that the scheduler in 'theorem 4.4 need not really insert lock's and unlock's into transactions, as it can

just keep track the first occurrence of each variable in each transaction.

If a schcduler is given additional dynamic information, i.e., (a) the read-completion information -- indicating

the earliest point that a transaction has read all the global variables that it ever wants to access, and (b) the

last-use information -- indicating for each global variable in V the point in a transaction that the variable is

used (read or written) for the last time, then the scheduler may enjoy higher performance. Using the read-

completion and the last-use information the following version of the two-phase locking policy can be

implemented by a scheduler.

A weak two-phase locking policy. For any x e V, lock x is always inserted immediately before the first access

of x and unlock x occurs as early as possible, as long as the two-phase locking requirement is still maintained.

Theorem 4.5: A two-phase locking scheduler corresponding to the weak two-phase locking policy is

optimal among schedulers using dynamic syntactic information plus the read-completion and the last-use

information.

Proof- Suppose that h is a schedule not belonging to the fixpoint set of the two-phase locking scheduler

defined in the theorem. Then there must exist transaction steps, say Ti I and T2j2 in h, such that (a) these steps

are scheduled for execution in the above order, (b) Ti and T2, 2 both access the same variable x, and (c) Tu, is

not the last step in transaction T, that uses x, or (c') T., is not after the read-completion point for T1. For the

case of (c) we define the transaction system T to be the same as the one used in the proof of Theorem 4.4. For

the case of(c'), we define the transaction system T - {T, T2} to be such that

T11: x+-X+1,T." y+- 2 *y,
9 . Y y+1,
T m1: x+- 2*

2'M2
all other steps are read steps, i.e., TO: x +- x , and the integrity constraints is "x - y." We see that the

transaction system T defined in either case is compatible to the syntactic information available at the moment

when T is scheduled for execution while T6 is not yet pending, and that schedule h is not a correct one for
: we 2j2 1sshdldfrexcto hl

T. 0

-, ...,...

REFERENCES 13

References
[11 Berstein, P.A., Goodman, N., Rothnie, J.B. and Papadimitriou, C.H.

A System of Distribu ted Databases (the Fully Redundant Case).
IEEE Transactions on Software Enigineering SEA4:154-168, March, 1978.

[21 Eswaran, K.P., Gray, J.N., Lonec, R.A. and Traiger, I.L.
The Notions of Consistency and Predicate Locks in a Database System.
Comnmunicationis of the ACM 19(1 1):624-633, November, 1976.

13) Kung, H.T. and Lehman, P.L.
Concurrent Manipulation of Binary Search Trees.

- I ACMI Transactions on Database Systems 5(3):354-382, September, 1980.
An extended abstract appears in the Proc. of the Fourth International Conference on Very Large

Database&, September 1978.

1] Lamport, L.
Towards a Theory of Correciness for Multi-user Data Base Systems.
Technical Report CA-7610-0712, Massachusetts Computer Associates, Inc., October, 1976.

[51 Manna, Z
Mathematical Theory of Computationm
McGraw-Hill, New York, 1974.

161 Papadimitriou, CJ-l.
The Serializability of Concurrent Updates.
Journal of the ACM 26(4):631-653, October, 1979.

[7] Silberschatz, A. and Kedem, Z.
Consistency in Hierarchical Database Systems.
Journal of the ACM 27(l):72-80, January, 1980.

[8) Stearns, R.E., Lewis, P.M. 11 and Rosenkrantz, D.J.
Concurrency Control for Database Systems.
In Proc. Seventh Annual Symposium on Foundations of Computer Science, pages 19-32. IEEE, 1976.

19] Yannakakis, M., Papadimitriou, C.H. and Kung, I-IT.
Locking Policies: Safety and Freedom from Deadlock.
In Proc. Twentieth Annual Symposium on Foundations of Computer Science, pages 286-297. IEEE,

1979.

. ..5'. .-

OFFICIAL DISTRIBUTION LIST

.Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 12 copies

Office of Naval Research Office of Naval Research
Information Systems Program Arlington, VA 22217
Arlington, VA 22217

2 copiesIcp

office of Naval Research Dr. A. L. Slafkosky
Branch Office/Boston Scientific Advisor
Building 114, Section D Commandant of the Marine Corps
666 Summer Street (Code RD-I)
Boston, MA 02210 Washington, D. C. 20380

1 copy 1cp

Office of Naval Research office of Naval Research
Branch Office/Chicago Arlington, VA 22217
536 South Clark Street
Chicago, IL 60605 1_p

Office of Naval Research Naval Ocean Systems Center, Code 91
Branch Office/Pasadena Headquarters-Cczrputer Sciences &
1030 East Green Street Simulation Department
Pasadena, CA 91106 San Diego, CA 92152

1 cop Mr. Lloyd Z. Maudlin

Naval Research Laboratory Mr. E. H. Gleissner
ichnical Information Division Naval Ship Research & Development Center
Code 2627 Ccputation% & Math Department
Washington, D. C. 20375 Bethesda, MD 20084

Assistant Chief for Technology Captain Grace M. Hopper, USNR
800 N. Quincy Street NAVDAC-OOH
Office of Naval Research Department of the Navy
Arlington, VA 22217 Washington, D. C. 20374

1 COPY1 cop

